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Abstract-The temperature distribution on a thin heat shield shell subject to longitudinal conduction, 
radiative losses, and an arbitrary aerodynamic source loading is considered. For the case where the 
internal face and the ends are insulated, the dete~ination of the normahzed temperatures reduces 
to a two-point boundary value problem for a nonlinear second-order equation in which the radiation- 
conduction parameter, E, appears explicitly. Uniformly valid solutions are obtained for small values of 
E by singular perturbation methods. Because of the presence of conduction, these distributions show 
the expected uniformization tendency relative to the l = 0 solution, as well as the anticipated “bound- 
ary layer” structure near the insulated ends. Factors influencing the range of applicability of the 

solution as well as extensions of the analysis are discussed. 

NOMENCLATURE 

k thermal conductivity [kcal/m h]; 
97 aerodynamic heat transfer distribution 

function normalized with respect to 
aGT4=& 

43 maximum value of aerodynamic heat 
flux along shield [kcal/m‘J h]; 

& coordinate along shield normalized 
with respect to L; 

L, length of shield [m] (see Fig. 1); 
T, temperature normalized with respect 

to T; 
T, maximum value of temperature along 

shield (grade); 

6k 
E = ~ conduction radiation ratio ; 

~72222 T3 

E, 

5? 

surface emissivity ; 
Stefan-Boltzmann constant [kcallme h 
Qk>*l. 

Subscripts 
outer, valid in outer region; 
inner, valid in inner region, i.e. near ends, 

(0, 1). 

Superscripts 
(L), left-hand inner region; 
(R), right-hand inner region. 

INTRODUCTION 

HEAT SHIELD shells have been used extensively 
as a means of thermal protection of spacecraft 
during re-entry. A typical application is as indi- 
cated in Fig. 1, where a cross section of a wing is 
shown shielded by the shell AOC, of constant 
thickness 8. The thermal stresses created are 
related to the degree of chordwise variation of the 
temperature along the shell. By use of a highly 
conducting material for the shell, it is possible to 
reduce this variation, and hence effect a saving 
in required structural weight. In a more general 
concept, it has been proposed [l] to vary 
sectional properties, such as the material compo- 
sition and thickness, as a function of x, the 
coordinate along the shield length, to obtain 
further benefits in structural e%ciency. Therefore, 
actual quantitative design assessments of the 
structural weight reduction afforded by the use 
of the conduction effects described previously, 
depend on accurate and quick methods for the 
estimation of the temperature distributions, 

In the present paper, singular perturbation 
techniques are applied to obtain closed form 
solutions of the temperature distribution for the 
case of small conductive transfer in comparison 
to radiation losses and convective loading. For 
the case at hand, the ends AB and CD, as well 
as the internal face BPD, are considered 
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FIG. 1. Heat shield geometry. 

insulated. In addition, in accord with general 
practice, the thickness ratio, 6/L, is regarded as 
small, and as a result, variations of the tempera- 
ture across the thickness may be neglected. 
Furthermore, it is assumed for convenience, that 
the section properties are constant with X. 
The extension of the analysis corresponding to 
the last assumption to the general case of section 
properties which are arbitrary functions of x 
is straightforward. Because of the high tempera- 
tures anticipated, it is assumed that the surroun- 
dings are at a negligible temperature in com- 
parison to those of the shield. In addition, each 
surface element of the shield is considered to be 
radiating away heat energy according to Stefan’s 
law, and, to have achieved steady-state con- 
ditions. 

Based on the foregoing assumptions, it can 
be easily shown that the boundary value prob- 
lem for the temperature corresponding to the 
assumed one-dimensional transfer model is : 

ET!! - T4 + q(x) = 0 (la) 

T’(0) = T’(1) = 0 (lb) 

where the primes denote differentiation with 
respect to x. 

Problems of this type have arisen in other 
physical situations. Carslaw [2] describes the 
case of a thermally radiating wire carrying an 
electric current. In his discussion, q(x) is a con- 
stant. Lick [3] treats the case for which q is linear 
in x, in connection with a radiating gas between 
parallel plates, and with the temperature, rather 
than the heat flux, specified at the boundaries. 

Hrycak [4] considers another special forcing 
function representing solar radiation. As mention- 
ed previously, the case of weak conduction will 
be treated here, i.e. E < 1. This situation is typical 
of a thin shield exposed to a re-entry environ- 
ment. AS a result, it is anticipated that in an 
“outer” region, i.e. away from the ends x = 0, 1, 
the temperature, T, has the following asymptotic 
representation : 

T(x; l 1 = Touter = [q(.W4 + ~TI(x) + . . . , 

as E JO (2) 

The expansion, (2), is nonuniformly valid with 
respect to x by virtue of the fact that the con- 
duction must balance the other modes of transfer 
in an “inner” region or “boundary layer” near 
the ends, in order for the temperature distribu- 
tion to satisfy the insulation boundary conditions, 
(lb). 

Because of this situation, the boundary 
value problem given by equation (1) is a 
singular perturbation problem. Although Lick 
[3] recognized this fact independently of the 
present authors in connection with the somewhat 
different but related problem, described earlier, 
he obtained only the first term of the “inner” 
expansion of the solution and not the uniformly 
valid solution. The latter will be obtained in the 
present paper using matching principles em- 
bodied in the singular perturbation method 
and described in reference 5. Moreover, by 
contrast to references 3 and 4, the present 
analysis will treat arbitrary q functions, subject 
only to the restriction that neither q(0) nor q( 1) : 
0. The latter case requires special treatment 
because the form of the expansions changes. 
Before proceeding, it is noted that if either or 
both q’(O) and q’(1) = 0, then no inner expansion 
is required and the solution is the regular 
perturbation development, (2). This is the case 
treated in reference 4. 

TEMPERATURE SOLUTION 

Substitution of the outer expansion, (2) into 
(1) and equating terms of like orders gives: 

T1 = ; q-3/4 [q1/4]” (3) 

In the inner region, on the basis of previous 
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considerations, it is asserted that the term ET” 
is of the same order as the other terms in equation 
(la). This implies that the “left-hand” inner 
region is given by x = O(~\/E). The foregoing 
suggests that the left-hand inner representation is 
given by: 

7’ = T;,$ (x; E> = go(Z) + v’( 6) gr(n) 

+ cgz (2) + . . . (4) 
as ~$0 

where : 

In this region: 

4(x) = 4Kdc) 21 = 

q(O) + (44 Xq’ (0) + q q” (0) + * * * (6) 

Substitution of equations (4) and (6) into 
equation (1) and retaining terms of O(1) gives 
the following approximate equation and boun- 
dary conditions for go, where the primes denote 
differentiation with respect to 2: 

s; - g,4 + q(0) = 0 (7a) 

k(O) = ‘Cl(l) = 0 (7b) 

Quadratures may be applied to obtain the 
following general solution of equation (7) : 

g0 (5 - g;(o) z=$ 5 si I 
-l/2 

- do) 15‘ - go(O)1 dE 
flou3 

(8) 
The alternative singular solution [q is the 
degenerate one, i.e. : 

& = 4(O) (9 
which is the envelope formed by variation of 
the parameter go(O) in (8). The solution, (a), 
implies that go approaches a point of infinite 
discontinuity for _? +a, where a is a finite number. 
Since such a discontinuity is physically un- 
reasonable, (8) is discarded in favor of (9). 
By use of the latter solution, and application of 
the previously outlined procedure, the following 
problems for the higher order approximate 
quantities are formulated : 

O(~E): g;’ - w2gl + q'(0) 2 = 0 (lOa) 

k(O) = 0 (lob) 

ClJs E 4[q(O)]3’4 (1Oc) 

O(E): g;’ - 4go gz - 6 g; g; + f q”(0) = 0 

(W 

g;(O) = 0 (lib) 

so that: 

Tide, = [q(O)]1’4 + 2/c 

- l/2 1 - ; (2/w2 + Z2) + D cash &I + 0 ( l 2/ 6) 

By similar considerations, applied 
solution is found to be: 

‘iL$, = [q(l>]1’2 + 2/c 

(12) 
to the layer, 1 - x = O(~E), the “right-hand” boundary layer 

hr(0) cash TX? - ; q’(1) 

+$$sinhTxt] +r{F~~~-l/2(~+~+x12)exp[-T~1] 

+ g2 sinh 7xt 7 I 
- s (2/r2 + xta) + Hcosh &} + O(EZ/E) (13) 
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where : 

A E 6gf [q’(0)12/w6, C = Aw” - q”(O)/2 

F = 6/z; [q’(l)12/@, G = F-r2 - q”(l)/2 

The constants, gr(O), hr(O), D, Hare determined 
by matching the inner solutions, Ti$, T.cR) 
with the outer one, Touter. General princ$$~ 
of matching are discussed in reference 5. In 
the present case, it is sufficient to require that 
the outer expansion, (2), written in terms of the 
approximate inner variables, agrees with both 
inner expansions for large values of the respective 
inner variables to suitable orders of 6. This 
gives : 0 0.04 0.08 0.1 2 0.1 6 0.20 0.24 

X 

a(O) = q’(0)/w3 (144 
FIG. 2. Temperature solution. 

D = - 1 lA/l2ws (14b) function determined empirically by Tewfik and 

hl(0) = -q’(l)/? (14c) 
Giedt [7] from experiments on cylinders, i.e.: 

H = -llF/l272 (14d) q = 0.37 + 0.48 sin 7x - 0.15 cos 2n.v (16) 

Having obtained the outer and the two inner Although equation (16) was derived for the heat- 
expansions, one can readily derive, using the transfer coefficient, it has been used above to a 
method described in reference 5, the composite good approximation for the heat flux variation, 
uniformly valid expansion. Thus, equations (12), since at hypersonic speeds, the wall temperatures 
(13), and (14) give for this expansion: are generally small compared with the recovery 

T(x;E) = [q(x)]l/J + (2/c) [f$j exp [-CL?] - ~~~)exp[--7x+]] 

exp [--27x+] 7 
+ F ~~ 3;2p- - I/2 3 ~2 + x+/T + x+2 exp [-7x+] 

! I 

+ y4(41” T3’* (-4 
4 > 

+ O(cdE) 

(15) 

To show the qualitative trends of the above temperature. The latter quantity is approximately 
solution, calculations were made of the tempera- constant between x = 0 and x = 1. 
ture distributions over circular shells, using a q The results are plotted in Fig. 2, where the 
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boundary-layer phenomena and the uniformizing 
effect of conduction relative to the E = 0 solution 
are evident. Also, it is noted that the upper bound 
on E from a computational accuracy standpoint 
in this example appears to be approximately 
O-01. This upper bound obviously would change 
with the inclusion of a greater number of terms 
in the expansion, and the selection of other q 

distributions which have different values of 
q(0) and q(l); the latter quantities appear in 
inverse powers in the terms of the expansion. 

It should be noted that the foregoing develop- 
ments represent only the first part of a more 
comprehensive research program. In this re- 
spect, attention is being directed to the treatment 
of the singular case for which q(0) or q(1) = 0 
and also toward the modification of the previous 
expansions in order to offset the limiting effects 
of the aforementioned factors. Further extensions 
envisioned include treatment of variable section 
properties, internal radiation, and the removal 
of the one-dimensional restriction in the analysis. 
Finally, a numerical solution of equation (11, 
on a firm foundation with respect to stability 

and convergence would be desirable to assess 
the accuracy of (15). 

The authors wish to express their appreciation for the 
helpful suggestions of Dr. J. Kevorkian, and Professors 
J. D. Cole and G. B. Whitham of the California Institute 
of Technology. 
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R&sum&-La distribution de temperature dans une coque mince faisant bouclier de chaleur sujette a la 
conduction longitudinale, aux pertes par rayonnement et B une charge arbitraire d’origine aero- 
dynamique est consideree. Pour le cas ou la face interieure et les extremites sont isof&, la determina- 
tion des temperatures normal&es se rbduit a un probleme de conditions aux limites en deux points 
pour une equation non-lineaire du second ordre dam lequel le parametre rayonnement-conduction, 
E, apparait explicitement. Des solutions valables uniformement sent obtenues pour des petites 
valeurs de E par des methodes de perturbation singulieres. A cause de la presence des conditions, ces 
distributions montrent la tendance attendue d’uniformisation relative g la solution E = 0, aussi bien 
que la structure attendue du type “eouche limite” p&s des extremites isoiees. Les facteurs influen~ant 
la gamme d’appli~abilit~ de la solution aussi bien que les extensions de l’analyse sont discutes. 

Zusammenfassung-In einem diinnen Warmeschild, in dem Warmeleitung in Langsrichtung, Abstrahl- 
verluste und beliebig verteilte Wlrmequellen wegen der aerodynamischen Heizung auftreten, wird 
die Temperaturverteilung untersucht. Fur den Fall, dass die Innenseite und die Enden isoliert sind, 
vereinfacht sich die Bestimmung der dimensionslosen Temperaturen auf ein Zwei-Punkte-Grenz- 
wertproblem fiir eine nichtlineare Gieichung zweiter Ordnung, in welcher der Str~iun~-W~rme- 
leitungsparameter t exphzit erscheint. Ahgemein giiltige Ldsungen erhalt man fur kleine Werte von 
c durch eine singullre Stiirungstheorie. Wegen der vorgegebenen Bedingungen z&en diese Ver- 
teihmgen die erwartete Vereinheitlichungstendenz relativ zur Losung 6 = 0 ebenso wie die erwartete 
“Grenzschicht’‘-Struktur in Nahe der isolierten Enden. Es werden Faktoren diskutiert, die den 

Anwendungsbreich der Losung und den Erfassungsbereich der Analyse beeinflussen 

AJMrOTaMM~-PaCCMOTpeKO pacnpeneXeKne TeMnepaTypbr Ka ~0~~082 o6oxouxe TemoBoro 

3KpZlHa IIpM npO~O~bH0~ Te~~OnpOBO~HOCT~l, JlyWCTbIX IlOTepSIX &i ~pO~3BO~bHO~ HHTeR- 

C~~BH~CT~ a3po~~naM~~e~K~x ncT0~n~K0~. fins ejry~an ~3o~~poBaKKo~ nwyrpemtet no- 
BepXHOCTK B KoHuOB Onpe#?neHMe HOpMMpOBaHHblX aHaMeHMtt TeMnepaTyp IIPPIBOAHT K 

3aHaYe ABYXT04eYHOti KpEleBOi 3anaqe AJ'lU HeJlHHefiHOPO J'paBHeHHfl BTOpOrO IlOpHAKa, B 

KOTOPOM B RBHOM BIlAe HMeeTCR H3.7Q"IaTeJIbHO-KOHAYKTLIBHbIti IIap3MeTp c. &IFIMaJIbIX 
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