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Abstract—The temperature distribution on a thin heat shield shell subject to longitudinal conduction,
radiative losses, and an arbitrary aerodynamic source loading is considered. For the case where the
internal face and the ends are insulated, the determination of the normalized temperatures reduces
to a two-point boundary value problem for a nonlinear second-order equation in which the radiation—
conduction parameter, e, appears explicitly. Uniformly valid solutions are obtained for small values of
¢ by singular perturbation methods. Because of the presence of conduction, these distributions show
the expected uniformization tendency relative to the ¢ = 0 solution, as well as the anticipated “bound-
ary layer” structure near the insulated ends. Factors influencing the range of applicability of the
solution as well as extensions of the analysis are discussed.

NOMENCLATURE

k, thermal conductivity [kcal/m h];

q, aerodynamic heat transfer distribution
function normalized with respect to
ceTi=g;

g maximum value of aerodynamic heat
flux along shield [kcal/m? h];

X, coordinate along shield normalized

with respect to L;
L, length of shield [m] (see Fig. 1);

T, temperature normalized with respect
to T;
T, maximum value of temperature along
shield (grade);
ok conduction radiation rati
R T i ;
L ction radiation ratio;
g, surface emissivity;
o, Stefan-Boltzmann constant [kcal/m?2 h
(deg)?].
Subscripts

outer, valid in outer region;
inner, valid in inner region, i.e. near ends,
(, 1).

Superscripts
L), left-hand inner region;
(R), right-hand inner region.

INTRODUCTION

Heat sHIELD shells have been used extensively
as a means of thermal protection of spacecraft
during re-entry. A typical application is as indi-
cated in Fig. 1, where a cross section of a wing is
shown shielded by the shell AOC, of constant
thickness §. The thermal stresses created are
related to the degree of chordwise variation of the
temperature along the shell. By use of a highly
conducting material for the shell, it is possible to
reduce this variation, and hence effect a saving
in required structural weight. In a more general
concept, it has been proposed [1] to vary
sectional properties, such as the material compo-
sition and thickness, as a function of x, the
coordinate along the shield length, to obtain
further benefits in structural efficiency. Therefore,
actual quantitative design assessments of the
structural weight reduction afforded by the use
of the conduction effects described previously,
depend on accurate and quick methods for the
estimation of the temperature distributions,

In the present paper, singular perturbation
techniques are applied to obtain closed form
solutions of the temperature distribution for the
case of small conductive transfer in comparison
to radiation losses and convective loading. For
the case at hand, the ends AB and CD, as well
as the internal face BPD, are considered
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F1G. 1. Heat shield geometry.

insulated. In addition, in accord with general
practice, the thickness ratio, 8/L, is regarded as
small, and as a result, variations of the tempera-
ture across the thickness may be neglected.
Furthermore, it is assumed for convenience, that
the section properties are constant with x.
The extension of the analysis corresponding to
the last assumption to the general case of section
properties which are arbitrary functions of x
is straightforward. Because of the high tempera-
tures anticipated, it is assumed that the surroun-
dings are at a negligible temperature in com-
parison to those of the shield. In addition, each
surface element of the shield is considered to be
radiating away heat energy according to Stefan’s
law, and, to have achieved steady-state con-
ditions.

Based on the foregoing assumptions, it can
be easily shown that the boundary value prob-
lem for the temperature corresponding to the
assumed one-dimensional transfer model is:

eT" —Th4-g(x) =0 (1a)
T’O)y=T1H=0 (1b)

where the primes denote differentiation with
respect to x.

Problems of this type have arisen in other
physical situations. Carslaw [2] describes the
case of a thermally radiating wire carrying an
electric current. In his discussion, g(x) is a con-
stant. Lick [3] treats the case for which ¢ is linear
in x, in connection with a radiating gas between
parallel plates, and with the temperature, rather
than the heat flux, specified at the boundaries.

H. F. MUELLER and N. D. MALMUTH

Hrycak [4] considers another special forcing
function representingsolarradiation. As mention-
ed previously, the case of weak conduction will
be treated here, i.e. ¢ < 1. This situation is typical
of a thin shield exposed to a re-entry environ-
ment. As a result, it is anticipated that in an
“outer” region, i.e. away from the ends x = 0, 1,
the temperature, 7, has the following asymptotic
representation:

T(x; €) = Touter = [q()"* + T1(x) + . . .,
as €0 (2)

The expansion, (2), is nonuniformly valid with
respect to x by virtue of the fact that the con-
duction must balance the other modes of transfer
in an “inner” region or ‘“boundary layer” near
the ends, in order for the temperature distribu-
tion to satisfy the insulation boundary conditions,
(1b).

Because of this situation, the boundary
value problem given by equation (1) is a
singular perturbation problem. Although Lick
[3] recognized this fact independently of the
present authors in connection with the somewhat
different but related problem, described earlier,
he obtained only the first term of the “inner”
expansion of the solution and not the uniformly
valid solution. The latter will be obtained in the
present paper using matching principles em-
bodied in the singular perturbation method
and described in reference 5. Moreover, by
contrast to references 3 and 4, the present
analysis will treat arbitrary ¢ functions, subject
only to the restriction that neither ¢(0) nor g(1) =
0. The latter case requires special treatment
because the form of the expansions changes.
Before proceeding, it is noted that if either or
both ¢’(0) and ¢’(1) = 0, then no inner expansion
is required and the solution is the regular
perturbation development, (2). This is the case
treated in reference 4.

TEMPERATURE SOLUTION
Substitution of the outer expansion, (2) into
(1) and equating terms of like orders gives:

1
Ty =, q ¥4 (g1 &)

In the inner region, on the basis of previous
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considerations, it is asserted that the term 7"’
is of the same order as the other terms in equation
(la). This implies that the “left-hand” inner
region is given by x = O(1/¢). The foregoing
suggests that the left-hand inner representation is
given by:

T=TH, (x;¢) = goX) + v(e) g1(X)

+eg2(®DF... 4
as €0

where:
=2 Q

In this region:

4(x) = 4ql(v'¢) X] =

40) + (v %' 0) + - LI" O+... ©
Substitution of equations (4) and (6) into
equation (1), and retaining terms of O(1) gives
the following approximate equation and boun-
dary conditions for go, where the primes denote
differentiation with respect to %:

g —gt+4q0)=0
8,(0) = go(1) =0

(7a)
(7b)

so that:

g = O + Ve |20 cosh o3 + 5 ¢°0) -

—1/2 (1/2w2 + - +x2) exp [— wX] + = 12 5
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Quadratures may be applied to obtain the
following general solution of equation (7):
1O [~ )] de

Y J {55 50
®

The alternative singular solution [6] is the
degenerate one, i.e.:

s = q(0) ©®

which is the envelope formed by variation of
the parameter go(0) in (8). The solution, (8),
implies that go approaches a point of infinite
discontinuity for ¥ a, where ais afinite number.
Since such a discontinuity is physically un-
reasonable, (8) is discarded in favor of (9).
By use of the latter solution, and application of
the previously outlined procedure, the following
problems for the higher order approximate
quantities are formulated:

—1/2

O(ve): g —ao?1+40)x=0 (102)
2,0)=0 (10b)
w? = 4[q(0)p (10c)

O(e): gy —4g0g2—6g2gl + » ") =0
(11a)
2:(0) =0 (11b)

q'0) exp [—2wX]
Do 3smh wx] + e{A [—W—

sinh wx] — E 5 (2/w? + %2) + D cosh wi} +0(eve)

(12)

By similar considerations, applied to the layer, 1 — x = O(+4/¢), the “right-hand” boundary layer

solution is found to be:

T® —

inner

1
+ 1212 sinh 'rx] — g (2/72 + x') + H cosh rx*} + O(ev/€)

xt
— [P + Ve [@ cosh 7' — 3 ')

— t
+ ) sinh -rxT] + e{F [e_xp_[?ﬂjl‘x] —

12 (1 X e t
/ (r_rz—i——_r + x )exp[—fx]

(13)
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where:

1—
=4 xt= - *

ho = [q(D'4,

€

\

25 [9'(0)]3/w,

= 6h5 [a'(DF/~5,

A

fi

C = du? — ¢"(0)2
G =Fr2— q"(1))2

The constants, g1(0), £1(0), D, H are determined
by matching the inner solutions, T, T,(®
with the outer one, Touter. General principles
of matching are discussed in reference 5. In
the present case, it is sufficient to require that
the outer expansion, (2), written in terms of the
approximate inner variables, agrees with both
inner expansions for large values of the respective

inner variables to suitable orders of . This
gives:
£1(0) = ¢'(0)/w? (14a)
D= —114/12w (14b)
h(0) = —q'()/+3 (14c)
H= —11F/12+* (14d)

Having obtained the outer and the two inner
expansions, one can readily derive, using the
method described in reference 5, the composite
uniformly valid expansion. Thus, equations (12),
(13), and (14) give for this expansion:
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092 %
o-gsf
084 %
O-80F
O‘?G%MW_M'- ]
072 €=0 ,(radiation equiflibrium)
068 : t ‘ -

0 004 008 Ol2 0Ol6 020 024

X

FiG. 2. Temperature solution.

function determined empirically by Tewfik and
Giedt [7] from experiments on cylinders, i.e.:

g = 0-37 + 048 sin mx — 0-15 cos 27x  (16)
Although equation (16) was derived for the heat-
transfer coefficient, it has been used above to a
good approximation for the heat flux variation,
since at hypersonic speeds, the wall temperatures
are generally small compared with the recovery

T = gl + (v |1 exp (-l — 7

—12 (37 w?

T —1/2 (% 72 + xt/r 4 xT2) exp [-Txﬂ}

exp —2wX]
o fa[opie

L F [exp[ 27-x*]
372

R e C2) el )

7} } + O(ev/€)

q’(l) exp[— rx*]}

+ X/w + iz) exp [«w)?]]

(15)

To show the qualitative trends of the above
solution, calculations were made of the tempera-
ture distributions over circular shells, using a ¢

temperature. The latter quantity is approximately
constant between x = 0 and x = 1.
The results are plotted in Fig. 2, where the
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boundary-layer phenomena and the uniformizing
effect of conduction relative to the ¢ = 0 solution
are evident. Also, it is noted that the upper bound
on e from a computational accuracy standpoint
in this example appears to be approximately
0-01. This upper bound obviously would change
with the inclusion of a greater number of terms
in the expansion, and the selection of other ¢
distributions which have different values of
g(®) and g(1); the latter quantities appear in
inverse powers in the terms of the expansion.
It should be noted that the foregoing develop-
ments represent only the first part of a more
comprehensive research program. In this re-
spect, attention is being directed to the treatment
of the singular case for which ¢{0) or ¢(1) =
and also toward the modification of the previous
expansions in order to offset the limiting effects
of the aforementioned factors. Further extensions
envisioned include treatment of variable section
properties, internal radiation, and the removal
of the one-dimensional restriction in the analysis.
Finally, a numerical solution of equation (1),
on a firm foundation with respect to stability
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and convergence would be desirable to assess
the accuracy of (15).
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Résumé—La distribution de température dans une coque mince faisant bouclier de chaleur sujette 2 la
conduction longitudinale, aux pertes par rayonnement et 4 une charge arbitraire d’origine aéro-
dynamique est considérée. Pour Ie cas ol la face intérieure et les extrémités sont isolées, la détermina-
tion des températures normalisées se réduit & un probléme de conditions aux limites en deux points
pour une équation non-linéaire du second ordre dans lequel le paramétre rayonnement-conduction,
€, apparait explicitement. Des solutions valables uniformément sont obtenues pour des petites
valeurs de ¢ par des méthodes de perturbation singulieres. A cause de la présence des conditions, ces
distributions montrent la tendance attendue d’uniformisation relative 2 la solution ¢ == 0, aussi bien
que la structure attendue du type “couche limite” prés des extrémités isolées. Les facteurs influencant
la gamme d’applicabilité de Ia solution aussi bien que les extensions de 'analyse sont discutés.

Zusammenfassung—In einem diinnen Wiirmeschild, in dem Wirmeleitung in Lingsrichtung, Abstrahl-
verluste und beliebig verteilte Wirmequellen wegen der aerodynamischen Heizung auftreten, wird
die Temperaturverteilung untersucht. Fiir den Fall, dass die Innenseite und die Enden isoliert sind,
vereinfacht sich die Bestimmung der dimensionslosen Temperaturen auf ein Zwei-Punkte-Grenz-
wertproblem fiir eine nichtlineare Gleichung zweiter Ordnung, in welcher der Strahlungs-Wirme-
leitungsparameter « explizit erscheint. Alligemein giiltige Losungen erhiilt man fiir kleine Werte von
€ durch eine singulidre Stdrungstheorie. Wegen der vorgegebenen Bedingungen zeigen diese Ver-
teilungen die erwartete Vereinheitlichungstendenz relativ zur Losung ¢ = 0 ebenso wie die erwartete
“Grenzschicht”-Struktur in Nihe der isolierten Enden. Es werden Faktoren diskutiert, die den
Anwendungsbreich der Losung und den Erfassungsbereich der Analyse beeinflussen

AsBoTANMA—PaccMOTPERO PACHPENeNeHNe TeMIePATYDH HA TOHKOH 060J0YKe TEIIIOBOTO
JKpAHa TIPH HPONOJBbHON TenJONPOBOAHOCTH, JYHYHCTHX HOTEPAX M NPOM3BONBHOK HHTEH-
CHBHOCTH A9DOZMHAMHYECKHX HCTOYHMKOB, IiA cyvyas H30IMPOBAHHON BHYTDEHHeHR mO-
BEPXHOCTH W KOHHOR ONpeJeieHne HOPMMPOBAHHBIX 3HAYEHMI{ TeMIEPaTyp UPHBORUT K
3ajave NBYXTOYedHON KpaeBoit 3ajade /A HeIMHEWHOr0 YPABHEHMS BTOPOTO HMOPANKA, B
HOTOPOM B SBHOM BHJE HMeETCHA M3NYYaTeNbHO-KOHAYKTHBHHN mapamerp e. J[JAMAIBIX
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sgaveHuii ¢ METOAOM CHHTYJNAPHHIX BO3MYyHmIeHHH I[ONYYeHH pABHOMEPHO CXOXAIMECH
pentennss. 3-3a HaI@4usa YCHROBHH 2TH PAcHpefeIeHNS NPOABIAIOT OMHAAEMYHD YHEPOD-
MH3AUUIC 00 OTHOLICHHAIO K PEHICHHIO IPH ¢ = 0, a TAKKe OMUAREMYIO CTPYKTYPY «IOTPAHMY-
HOTO CJIOA» Y H30JMPOBAHHHIX KOHLOB. OOcympmaorea Qaxropsl, BIMAKL{IE HA NUANa30H
IIPUMEHHMOCTH DelIeHHA, & TAKMKe HA PAcHPOCTpaHeHHe AHAIHBA HA APYrue CaIyYadm.



